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This paper treats the.‘effectof aspect ratio on the air forces and
moments of an oscillating flat rectangular wing in supersonic potential
flow. The linearized velocity potential for the wing undergoing
sinusoidal torsional oscillations simultaneouslywith sinusoidal
vertical translations is derived in the form of a power series in terms
of a frequency parameter. The series development is such that the
differential equation for the velocity potential is satisfied to the
required power of the frequency parameter considered and the linear
boundary conditions are satisfied exactly. me method of solution C=

be utilized for other plan forms, that is plan forms for which certain
steady-state solutions are known.

Simplej closed expressions that include the reduced frequency to.
the third power, which is thought to be sufficient for most practical
applications, are given for the velocity potential, the components of
total force and moment coefficients, and the components of chordwise
section force and moment coefficients. The components of total force
and moment coefficients indicate the over-all effect of aspect ratio
on these quantities; however, the components of chordwise coefficients
yield more information becausethey account for the spanwise distribu-
tion of aerodynamic loading of a rectaq@ar wing and may therefore be
more useful for flutter calculations. It is found that the components
of force and moment coefficients for a Small-aspect:ratiowing may
deviate considerably from those for an infinite-aspect-ratiowing.
Thickness effects which may alter some of the conclusions are not taken
into account in the analysis. Results of some selected calculations are
presented in several figures and discussed.
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INTRODUCTION
J

The.effect of aspect ratio on the single-degreetorsional
instability of a finite rectangular wing oscillating in a supersonic
stresm was treated in reference 1 by expanding, in powers of the fre-
quency of oscillation, the linearized velocity potential developed in
reference 2. Since only slow oscillations were considered pertinent to
single-degreetorsional instability, terms in the expansion involving
the frequency of oscillation to powers higher than the first were not
considered.

In the present Taper the expanded linearized velocity potential is
used to study the effect of aspect ratio on the air forces and moments
of an oscillating, thin, flat, finite, rectan~= wing when higher
powers of the frequency of oscillation are taken into account. The
motions considered are sinusoidal torsional oscillations about a span-
wise axis taken simultaneouslywith sinusoidal vertical translations of
this axis. The velocity potential is developed by”superpositionsof
sources and doublets, so as to include all powers of the frequency of
oscillations up to any desired power. Stiple, closed expressions are
given for the velocity potential.,components of the total force and
moment coefficients,and components of the chordwise section force and
moment coefficients involving powers of the frequency up to and
including the third power. Extension of the results to include higher
powers of the frequency is straightforward.

A recent publication, reference 3, that became available after this
investigationwas completed, is partly devoted to the treatment of a
rectangular wing undergoing the same types of harmonic motions as those
considered herein. The velocity potential is determined in the form of
a double integral, by application of the Fourier transform to the
boundary-valueproblem for this potential, and expressions for forces
and moments are given in terms of this double integral. The reduction
of the integral expressions of reference 3 to forms desirable for
flutter calculations,that is, chordwise section forces and moments,
is not given.

SYMBOLS

@

X,y,z

disturbance-velocitypotential

rectangular coordinates attached to wing moving in
negative x-direction

.

L,
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Zm

Xo

t

h

ho
,

a

a.

c

M

P=!=
T12T2YV1)V2

W(Q’1)

w(t)

CD

M2U
a=—.

vf12

k

rectangular coordinates used to represent space location
of sources‘ordoublets in xy-plane

function defining mem ordinates of any chorditisesection
of wing such as y = yl as shown in figure 1

vertical velocity at surface of wing along chordwise
section at y = Y1

abscissa of axis of rotation of wing (elastic sxis) as-.
shown in figure 1 -

time

vertical displacement

amplitude of vertical
yositive downward

angle of attack

of sxis of rotation

displacement of axis of rotation,

amplitude of angular displacement about axis of rotation,
positive leading edge up

time derivative of h and a, respectively

velocity of main stresm

velocity of sound

free-stream ~chnwber (V/c)

functions defined with equation (7)

function used to represent space variation of source and
doublet strengths

function used to represent time variation of source and
doublet strengths

frequency of oscillation

reduced frequency (oh/V)
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Fn,Gn

represents functions of 6, x, and M, defined in
equation (15)

represent functions of x, ~, and ~, defined in
equation (19)

function used to-denote doublet distributions (see
equation (21))

function defined in equation (28)

function defined in equation (29)

density

local pressure difference measured positive downward>
defined in equation (31)

half-chord

half-span

aspect ratio (s/b)

total force acting onwing” defined in equation (32)

components of total force coefficients, defined in
equation (35)

totalmoment acting on wing, defined in equation (36)
.

components of total moment coefficients, defined in
equation (38)

section force (total force at any spanwise station),
defined in equation (39)

components of section force coefficients,defined in
equations (41) and (42)

section moment (total moment at any spanwise station),
defined in e~uation (40) - -

components of section moment coefficients,
equations (43) and {44) .

functions related to Fn and Gn, defined

. .

defined in

in appendix

d

. .
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ANALYSIS

Boundary-Value Problems for Velocity Potentials

Consider a thin flat rectangular &rig moving at a constsnt su-per-
sonic speed in a chordwise direction normal to its leading edge as
shown in figure 1. The boundary-value problems for the velocity
potential for such a wing may be conveniently classified-intotwo types
associated with the nature of the flow over different portions of the
wing. On the portion of the wing between the Mach cones emanating from
the foremost point of each tip (region N in fig. l(a)) there is no
interaction between the flow on the upper and lower surfaces of the
wing. The type of boundary-value problem for this portion of the wing”
is re’ferredto herein as “purely supersonic” and the velocity potential
for regionN is denotedby ~. On portions of the wing within the
Mach cones emanating from the foremost point of each tip (regions T1,
T2, and T3 in fig. l(a)), there is interaction between the flow on
the upper and lower surfaces of the wing. The type of boundary-value
problem for these portions of the wing is referred to as “mixed
supersonic” and the velocity potentials for these regions are designated

bY @TIj @T2J and @T3, respectively. The complete velocity potential

at a point may then be expressed as ~, @Tl, @T2, or @T3 according “

to the region that contains the point.

As customary in linear theory, as applied to thin flat-surfaces,
the boundary conditions are to be ultimately satisfied by the velocity
potentials at the projection of the wing onto a plane (the x-y-plane)
with respect to which all deflections are considered small and tihich
lies parallel to the free-stream direction. Thickness effects are not
taken into account; hence, the velocity potentials are associated only
with’conditions that yield lift and are consequently antisymmetrical
with respect to the plane of the projected wing. It is therefcne
necessary to consider the potentials at only one surface, upper or
lower, of the projected wing. The upper surface is chosen for this
analysis.

The differential equation for the propagation of small disturbances
that must be.satisfied by the velocity potentials is (when referred to
“a rectangular coordinate system x,y,z with the xy-plane coincident
with the reference plane and moving Uniformly in the negative
x-direction, fig. 1)

(1)

.. -—. .. ....-—- .—-—-— —-—--———-- .—— — --————-——----.- —------- —-————-- ——
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J

The boundary conditions that must he satisfied by the velocity potential
are: (a) bregions TI> T2> T3> and N the flow must be tangent to the

surface of the wing or

(2)

where ~ is the vertical displacement of the ordinates of the surface
of any chordwise section of the wing (see fig. l(b)). (b) Inregians T1
and T2 the pressure must fall to zero along the wing tips and remain0
zero in the portion of the Mach cones emanating from the foremost
points of the wing tips not occupied by the wing.”
that the potential must be zero ahead of the wing
off the wing adjacent to the Mach cones emanating
points of the tips, is automatically satisfied by
and doublet synthesis employed in the solutions.)

.

(Another condition,
and in the regions
from the foremost
the type of source

For the particular case of a wing independentlyperforming small
sinusoidal torsional oscillations of smplitude 1%1 smd frequency o

about some spanwise axis ~ and small sinusoidal.vertical translations
of amplitude ~1 and frequency o, the equation of ~ is

= . eiutc%(x -X0) +

Substituting this expression for ~

W(x)yl,t) = Va +

%] ’~(x-%3)+h (3)

into equation (2) gives

&(x - Xo)+i (4)

The velocity potential may thus be expressed as the sum of separate
effects due to position and motion of the wing associated with the
individual terms in equation (4) as

The boundary-value
is the same as that for

Derivation of @N

problem in the-purely supersonic region (fig. 2(a))
the two-dimensional wing treated in reference 4.

This problem is there shown to be satisfiedby a distribution of sources
referred to, in this case, as moving sources because of the unifo~ “’
motion; that is,

-—— —
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fiN(x,y,z,t)= - &f-’z~: W,,,,),, d, d,

In equation ‘(6) W(3,~) represents the space variation of source
strength and must be evaluated in accordance with the
of equation (4) and @l is the potential of a moving
at the point (~,q,O) that may be expressed as

@l = ‘(t - “-) + ‘(t - ‘2)
/(7 - TJ(V2 - v)

where w(t) is the time variation of source strength
with subscripts appearing in equation (7) are defined

The

may

M(x - 5) Jl - 71)(72 - v)T1 =
2

@ .
pc

(6)

individual terms
source situated

(7)

and the symbols
as

time variation of source strength w(t) for harmonic oscillations-
be written as

w(t) = eiu)t

The numerator in equation (7) thus becomes

im(t-T1) + eiU(t-T2)W(t - Tl) + w(t - T2) = e

(8)

T2+T1
icrft “ —

= 2e e-lo 2 ‘2 - ‘1
Cos m —–– (9)2

. .. ...— —..__ —.. .—— .——_ -.—. .... ..-—
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Substituting equations (7) and (9) into eq-tion (6) yields

@N(x,Y,z,t) =
-% Jx-pzJy(E’’)e-im(x-“0).

where, for briefness,

CUM M2U
5=—=— 2Cp V$2

and

(x - E)2- 132(y- 11)2- i32z2= p q - l@(?12 - q)

The values of W(g,q) associated with the different terms of equa-
tion (4) are, in the order in which they are used:.

For h
?

For Va

w(E,~) =Va(j

(11)

(12)

.,,

,,

For &(x - XO)

If any of the values of W(~,q) given in equations’(11), (12),~md (13)
is put into equation (10), the integration with respect to q can be
readily performed and the remaining integrsl evaluated as a series of
Bessel functions. (See, for exsmple, reference 4.) However, in order
to be consistent with and to lead naturally to a succeeding part of the
analysis the integrand is expanded into a Maclaurin’s series with
respect to @i. The expansion yields

e

- ——— - ——
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d’afl ~+... )+(so@ + a12~R + . . . +a@FR+. ..)o+. o+

(aOmR~-3 .+ ab~Rd-3 + . * . + am$%~-3+ . . . + . . . dq d~ (14)v
where the coefficients am are functions of ~, x, and M; those
coefficients involving ZD,up to and including the third power, are:

fi2 .–3
aol=l-it&-T x2+- *X 3

iii?’
a31 .-—

6

id
a12 = -—

~2

(15)

Observe the following identity that is valid regardless of the highest
power of ~ considered and that will be of subsequent use, namely

aol+xall+ ...+ xnati~l (16)

- —-----------—- -—-- —————. —--- . ......— .—____ ....-.,_ .. . . . .... ... . .._ __ _. __________ _ ___
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It will.be noted in equation (14) that the potential of a moving source
when expanded in terms of the frequency appears as a series of terms
similar to steady-state source potentials plus series of terms involving
various powers of R. By grouping the terms in equation (14) with
respect to powers of- ~, the following formof the source potential
convenient for later use is obtained: .

a R2M-3 +
)(

+Ean*+a@+. . .
+a R2M-3 +

Om
. . . . . .)

+...+

(

2M-3 +
Enafl*+’a@+. ..+~

.J+~I
. . dq d~ (17)

With the terms of the series grouped in this manner, in view of the
fact that the differential equation (1) is independent of ~, it is
apparent that the coefficient of each power of 5 in equation (17)
is a solution to the differential equation.

If the values of W(fj,q) in equations (n), (12), and (13) are
put into either equation (14) or equation (17)j the integrations of each
term can be easily carried out in closed form. Moreover it can readily
be shown that, when all the terms involving ti up to a given power are
taken into account, the differential equation (1) is satisfied to the
highest power of Z5 considered. The boundary condition of tangential
flow as expressed in equation (4-)is satisfied exactly and does not
depend on the order of fi considered.

Futting the values’of W(~,q) in equations (n), (12), and (13)
successively into either equation (14) or equation (17)j carrying out
the indicated integration, and setting z = O yields for the velocity
potential, to the third power of = at the upper surface of the wing,
in the purely supersonic region:

$

(18)

.

—. .—— _— ..— —-—. . ..— -—-—- ..—— —
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where ‘

~2
62

fl =x-—x
2 - -’n& (2p2 +’3)X3

fi2 ~2
fs = ;(x-2xo)-~(x-3xo) - ---@ (292 + 3)x3(x

Derivation of @Tl, @T2, and @T
3

14X()) (19)

For convenience in the derivation of the velocity potentials in
the regions of mixed supersonic flow the coordinate system is chosen
with the origin at one tip and the y-axis coincident with the wing
leading edge. (See fig. 2(b).) Region T3 (shown in fig. l(a)) exists
whenever the Mach lines from the tips intersect one another on the wing

‘ (that is, when Aj3<2). When the Mach lines from the tip intersect
one another on the wing and in addition intersect the tips ahead of the
trailing edge (when AJ3< 1), other regions, not considered herein, have
to be taken into account, and the determination of the velocity potentiel.
becomes very cunibersome. !L’hisdiscussion is restrictedto the condition
that the aspect ratio be greater than.or equal to l/~, that is, Q3 > 1.

Because of the similarity of conditions in regions T1 and T2,

the potentials @T1 and @T2 will be of the same form. It is there-

fore only necessary to derive one of these, saY @T1. The other

potential can then be obtained by a simple translation of variables.
me potential. @T3> as given later, is a linear combination Of @N, @~J

and @T2.

As pointed out in reference 1, moving doublets may be used to
satisfy the boundary-value problem in the regions of mixed su~ersonic
flow. The potential of the type of doublet required may be obtained by
psrtial differentiation of the potential of a moving source with respect
to the direction normal to the plane of the wing (in the present

..—. -—-------—————.- ...—. -I.—z -——. .— .—
—.— .-—

.—-— —.——— . .
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notation with respect to z). If the expsnded form of the unit source
potential appearing in equation (17) is partislly differentiated with
respect to z, the following expanded form of a unit doublet potential
is obtained:

eimt ~
$!2=— xx

—

(
aol*+ao@+ o.. +ad

2m-3 +
. . .

)(
+gall*+

I

L

.

2m-3 +
al@+ . ..+a@ . . .

)
+...

(
+ Ena& +a@R+ . . . +

(20)

.5

Since the coefficient of each ’powerof “~ in equation (20) satisfies
the differential equation sad since the differential equation is linear,
it is permissible to weight these coefficients differently and therefore
write the velocity potential for region ~ as

.

(
2m-3 +

‘l%l*+a@+. . . + a~ . . .
)
E+,..+

(

+ amR2m-3 +
%am~+atiR+ . . . . . .

) 1
En+. ..and~ (21)

where Di(~)~) (i = 0,1,2,...n) are the weight factors or distribution
functions and where the region of integration r is the portion of the
wing lying in the forecone emanating from the point (Xyy,Z). (See
fig. 2(b) for the case z = O.)

The problem is now resolved to that of determining the distribu-
tion function for each series in equation (21) so as to make this
equation satisfy the boundary conditions. Tne determination of these
functions can be made with the aid of analog with known steady-state
solutions. Examination of equation (21) shows that the first term of
each series has the form of a steady-state doublet potential and, as
discussed subsequently, is therefore.a type of singularity that can be
superposed to satisfy certain conditions of tangential flow for the
antisymmetrical type of problem in regions of mixed supersonic flow. t
The second term of each series, with the indicated differentiation

u

-——. ————
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performed, is a singular type of potential, (steady-state source type);.
however, :It is multiplied by z and would therefore yield zero vertical ‘.
velocity at the xy-plane. All other terms appearing in each series in
equation (21) are similarly multiplied by z and are nonsingular;
they therefore yield zero vertical velocity titthe xy-plane. In order
to satisfy the condition of tangential flow it is therefore necessary
to consider only the first term in each series.

Retaining, as necessary, only the first term in each series in
equation (21) &d imposing the condition of tangential flow as e~ressed
in equation (2) results in an integral equation for the distribution
functions Di (i = 0,1,2,...n) as follows:

()Mq
W(x,y,z,t) ‘ ‘~ ~+o

Consider the following integral which is of the type appearing in
a representative “first” term in equation (21) and which represents,
as previously mentioned, the potential.of a doublet distribution for the
steady-flow problem:

(23)

In steady flow a distribution of this type is convenient for treating
the problem of satisfying the condition of tangential flow for a dis-
tribution of normal velocity at the wing surface prescribed independent
of y but proportional to ~. The required integral equation for the’
distribution function ~ in the steady case is

(24)

where C is a known constant.

As noted in the following, the distribution function DK maybe
known provided Do is known. The value of Do in equation (24) is known

-. .—.-_._. _- .. .. __ __________ ____ ———-—__ . ——..__..e_ —— ._ _-..—___
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fpr a variety of wing plan forms. In the case of rectangular wings the
expression for DO is derived in reference 1 and found to be

1
‘O=$_l~+~sin-l Br]k

(25)

This e~ressionmay be considered as a“key for fiiding sny other dis-
tribution function DK (K> O) required to satisfy equation (24) for-- .
the rectangular wing.
that any .% (K> O)
equation (25), as

?K

It follows by direct substitution and reduction
for this wing may be written in terms of Do,

(26)

The boundary conditions (a) and (b) can be shown to be satisfied
by equation (22) sfter the values of ~, given in equation (26), and
the values of l?(~,q),defined by equations (11), (12), and (13), are
substituted into equation (21) for the velocity potential and the
identity in equation (16) is utilized. l!hevelocity potential @~

is thus determined by equation (21) and these substitutions. At the
upper surface of the wing the velocity potential @K is given by the

—

(
~2x

2F1 -
)

2iZi+— F2 1~2a2F3+
~2 ~2

—

L(
7j32

)
~2a2 F3 + ~ (292 -Va2F1- 2i?i5+-x- ~F2-—

~2 ~2 11)F4 +~2

(
—

& 2(x - XO)F1 -
l_
2 +2iZ6(x - Xo) + ~~(xp -

& 12XXO)F2 + ‘

[

2%
1

-ff’f(x-xo) F3 +--Q

})

‘2 (2~2 + 1)F4 (27)

where the terms are grouped convenientlyby the definition of Fn in
the following integral:

J
x

Fn = Xn-l sin-
C

1 mti

o“ x (n = 1,2,3,4) (28)
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..

(The functions Fn, given in equation
tions are of particular importance in

(28), and certain related func-
the remainder of this development.

Integrated values of this function for the first few values of n ‘and
expressions for related functions needed later in this.analysis are
given in the appendix.)

Examination of equation (27) shows that along the Mach line x . ~y,
separating region T1 from region N, the expression @Tl reduces to

the expression for @N given in equation (18).

The correspondingpotentials for regions T2 and T3 can nowbe

obtained. The potential @T2 is obtained from equation (27) by merely

substituting 2s - y for y in equation (28) so that

(n = 1, 2, 3, 4) (29) “

The potential in region T3 (that is for l~Aj3 <2) is a simple
superposition of the potentials for regions N, Tl, and T2, as in the
steady case (see, for example, reference ~), and.may be written as

@T3= @~‘ f$2- @N

Forces and Moments

Two types of force and moment coefficients
in order to gain some insight into the over-all

will be derived.
effect of aspect

(30)

Fimt,
ratio

on the forces and moments, expressions for total force shd moment
coefficients are derived. Then, in order to present expressions that
are more suitable for use in flutter calculations, expressions for
section force and moment coefficients for any station along the span
will be derived.

Total forces and moments.- The local pressure difference between
the upper and lower surfaces on the wing may be written

(31)

In order to derive expressions for total forces and total moments it is
only necessary to consider the velocity potential.in two regions; either
regions N and T1 or regions N and T2. Therefore the expression

. .. ------ -———. — .—————.-——-—.-— —-— --- — ...-. ..- —. ——. —.... . .. - .-.. -——
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for the total force, positive downward,

F.= -2
H

Am dy dx
N

NACA TN 2064

on the wing may be written as

-2
JJ

APT1 W dx (32)
T,

where ApN is to be calculated from equation (18) and the inte~ations
in the first terq are to be extended over the shaded’portionof
region N shown in figure 2(a), ad where ApTl is to be calculated

from equation (27) snd the integrations in the second term are to.be
extended over region ‘3’1.(The integrations in the first term are
simple and may be perfo”med by inspection. Those in the second term
may be readily,performedby making use of the relations given in the
appendix.)

After the indicated integrations have been performed and all
position coordinates involved have been referred to the chord 2b (but
~he original coordinate s~bols maintained), the results can
as

where the reduced frequency k is related to o and ~ by
relations

and where

be written

(33) .

the

(34)

(35a)

(35b)

(35C) .

*

..—
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M%”“-2p2~) + --& + P~4 = --&p -1

[

2 + 129%) + * -#2 + 313%73)- .

(35@

The quanities L~ (i = l,2,3,k) are the in-phase and out-of-phase
components of the total force coefficients,~ and ~ being the in-

phase and G snd ~4, the out-of-phase components. It will be noted
that ~ and ~ are associated only with vertical translations of

the wing and are independent of axis-of-rotation location ~. The
components ~ and ~4 are associated with angular position and

rotation of the wing about any axis x = ~ and depend partly on the
location of W.

l’hetotal moment, positive clockwise, on the wing about the
arbitrary axis of rotation x = X. is

Ma =

If steps
‘ there is

-2
JJ’

(x-xO)ApNdydx-2
JJ

(X - W) APT1 dydx (36)
N Tl

similar to those required to obtain equation (33) are performed,
obtained

where

M= = %(2 - 3XO) - -&~P2 + 1- 4xo(2 + ~2~
3P

(~ = &l - 2XO) - !!%(3 - 4XO) - A L(2 - 3XO) -
3A ~2k ,

#k-#[4(P2 + 4)(4 - 5%)]

.} ~

(3a)

(38b)

.. .— ..—. ....... . .---.——..— .- .fl..._....——...—-y..— __._—. ... .....-.___.___ — —+..+—. .... .. ...
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[

11

[
— —(2 - 3W) .“* 4(4 + 3p2j+ 5XO(3P4 + 3P2 - 4) -
3A p2~2

T

II
20&&(# + 2)

●

(38c)

@
[ ] + %(2O + 4,2- 2,X0 +~2(P2 - I) - ~(2j32 - 1) + 6P2X02

3~3k

[

4op2~ -60p2~2) +&$---+4@2 -I) - 6P2~2] -

M2k
1}-@(2 +@2) -24%(2 ~3P2 - P4) - 30B2X02(4+P2) (38a)

The quantities K1 and F2 are, respectively, the in-phase and out-of-
phase’components of total moment coefficients about the axis x = xo
associated with vertical translations of the wing; M= and ~4 are the

corresponding components due to angular ~osition and rotation of the ,
wing about x = XO.

It is of interest to note in equations (3~)”and {38) that the
components .~ and El do not involve the reduced frequency k. The

effect of frequency on these two components comes from terms involving
the frequency to the fourth and higher powers; but for values of k
thought likely to be encountered in supersonic flutter (k <0.1), the
contribution of these higher-powered terms to any of the components in
equations (35) and (38) is, for the most part, negligible.

Section forces ad”moments.- The section forces and moments at
any spanwise station are derived by integrating,the pressure difference
along the chord for the forces, and the pressure difference multiplied
by a moment arm for the moments. Since the distribution over the entire
wing is symmetrical with regard to the midspan”section, it is only
necessary to derive expressions for the forces and moments at any
station of the half-span adjacent to the origixi. (See figs. 1, 2,
and 3.)

—-— ——--——— -—–-—-———---— —–



NACA TN 2064 19

Under the restrictions previously stipulated, two cases that can
arise are considered (see fig. 3): (1) the Mach lines from the tips
do not intersect on the wing (or A~ > 2) and (2) the Mach lines
intersect on the wing but the Mach line from one tip does not intersect
the opposite tip ahead of the trailing edge (or l=A~~2). Only the
final.forms of the section force and moment equations are given. These
forms are easily calculated by deriving the pressure difference for the
different regions from the appropriate velocity potential, making use
of figure 3 to determine the limits of integration for the regions
involved, and using the relations given in the appendix to carry out
the more troublesome integrations. The integrated expression for any
region can then be reduced to the forms

P=
[

-4PbV2k2eiut % 1#Ll+W)+CLO(L3+ fi4)

and

%= [

2iu#0-~bwk e IT(M1+~)+~o(M3 + i.M4)

(39) ‘

(40)

where the position coordinates are referred to the chord length 2b.

The components of force and moment coefficients for the half-span
adjacent to the origin are as follows: .

Case 1 (see fig. 3(a)): For any section between the tip and the
point where the Mach line intersects the trailing edge, or

where O<y<~’, the components of section force coefficients are

L1 . (_:q-
?)

1+2627

P2

[[

2
L2=&-&~l+Mk --## -1)72

[

41=
‘3 ‘ ~Jt2k2

.— F1 - 2(1 - 2xo) ~1 +

2(2p2 +l)XO = 6B2 +5
p2 ‘2 - p2

(41a)

j
- 3P2F3

+%-

1$3,

(41b)

(41C)

- .. . ... .. . ....-. —.. ———-— — ----- .— .——--— —--——————-- -. ..——-.— ..—. .. —..—-—
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([~~(2-xo)Fl-
‘k=~fik

3P2;, ,j+!$p-P2 +2,4+ .

2&Q - 4j34xo)F2 - 6134(4 - 3%) ~, - (I -7132 - 1}20~4)~4 (41d)

where ~- (n = I, 2, 3, 4), given in the appen~y is obtained from Fn}
equation (28), when x = 2b. For any section between the point where
the Mach line-intersects the trailing edge and the midspan,

1< <A
where ~= y= ~ , the components of section forces are:

[ 1~(3 +132)+6P2WL3=&-3~5 ,

[
L4=~(P2 -1)-

j3k
2&J +$(5 + ~2 +

As a check on the results in equations (41) and (42)

I
(42)

12J32X0)

the expressions
.

in equations (41) reduce to those in equations (42) when y = ~.
P

The components of section moment coefficients for case l-are as

follows: For O <Y <$>

—

(%=*~(%- X$=l)+

1]

4j32+ 1 ~4
fJ2

12$2+ly2-3P2+l~3+ 2X0
P fJ2

[
M2k (292-1)(1 -2Xo) =F2 + 6@=3 -
F I@

.—...––

(43a) ~

(43b)

.

.

-... —
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.

.

.

L-$-+F2 - x~l) -.‘3 = py(#
4(1 - 3X0 + 3X02)

3

(6P4 + 3P2 - I)(1 - 2X()) + 4p%& 1 + 2J32)=

fJ4
F2 +

6(1 + P2)
*T3 -

1

2op4 + 21p2 + 3 =
p2 F4

3P4

/

M4 =

([ 1&~(’-%J2<+-xJ2--F3 +

f

(EhM2k 1
(4134- 2p2 + 1)(1 - .3X0+ 3X02) + 1

TQ .1-3X7 E2 -

(2- 4x0 + 3X02)F3 -~(8P4+ 4p2 - 1)=4+

1 })7(592 + 3)F5
3P

3(2 - 3X())
3p3

M2 =

M3 .

M4 =

*(1 - @) M2k- -J3 - 4XO) “

%(1 - =()).- ‘(3 + ~2 - 4X0 + 4~2xo - 8~2x02)
~k 2P5

c& 2($2 - 1) - 3XO(2P2 - 11)+6132X02 +

M2k c- 4(5 + P2) + 5~(8P2 - 5) - 60B2%2
15p7 I

(43C)

(43d)

(44)

..—....— -—T. -—–—. - —..—.._ ...—.-.—-_
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.3

The expressions in equations (43) reduce to those in equations (W) . “

when y = ~. The expressions in equations (42) and (44) correspond to
B

the more exact two-dimensional components of force smd moment coeffi-
cients derived in reference 4. For values of k< 0.1 these expres-
sions yield, for the most part,’v~ues that are in good agreement ~th
those that may be calculated from the tables in reference 4.

Case 2 (see’fig. 3(b)): For any section between the tip at y = O
and the point where the Mach line from the tip at y = 2s intersects—

(the trailing edge or where o<y~f+), the components of section

force coefficients-aregiven by equations’(41) and the components of
section moment coefficients,by equations (43). For s-W section between
the point where the Mach line from the tip at y = 2s intersects the

(
1< y~-~), the componentstrailing edge and’the midspan or where A - ~

of section force coefficients are

{[.

l+ppp=’

1}

~(~1+~-)- ~2 (F2 +%) +$Ll=-pfi

{
L2 =: *(Z ‘R) +M#~P2 - 1)(F2 +Q -

}

3132(53+ E3fl -

(k-p)

(45a)

\“

(45b)

@34 + 3p2 -1 (F2+ k) 2(2j32+ l)XO =
(F2 + =2) -

P4 P2

,-3+E3g-{;’3,5[.692+5 ~ —- 1}~ (3 + p2) + 6p2q
P2

(45C)

.

.

.—
.,

— ——
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([L~=+--(2 - Xom + Tl) -
1

j~;: 1 (F2+ !Q -1-

6P4(4 - 3x0)(~3 + ~3) - (1 - 7p2

{

-j-y-l) - 21#xJ + M5(5 +

1]- 20~4)~4 +&4) -
.-

}

BP + 12&J (45d)

given inwhere ~n (n=l, 2, 3, 4), the appendix, is obtained from Gn,
equation (29), when x = 2b. The corresponding components of section
moment coefficients are

Ml.-

{[

2xo(2p2 + 1)
*(l- 2XO)(F1 + Q + 1(F2+F2)-

p2

j~pp: 1 (F3 +%3) + 5(2 - 3XO)

}
(46a)

[
M2=&*~~2+~2) -x&+FJJ+

r

#k (2~2 -1)(1 -2x0) =
(F2 + ~2) + 6~(~3 + ~3) -

T P2

1}L4#+l(F4+~4) “-
3(1-2W)-5p2

1
(3 - 4XO) (46b)
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M3 =

M4 =

[[
&*(F2+62)-x&+q -41- 3X; +3W2

NACA TN 2064

(Fl + ~) +

(694+ 392- 1)(1 - 2’0) + 41A@l + 292) =
(F2+ ~2) +

0
N

6x0(1 + P2) a
(F3 + ~3) -

2op4 + 21p2 + 3

}

(F4+F4) -

B2 3P4

{

L(1 -2%) ~- &~3 + p2) - 4xo(1 - P2) - 8p2x02 (46c)
p$

([ 2

&$ (l- XO)2(F1 + Fl) + y ‘O(F2 +,G) 1-4-$4(F3+33) +

{[
@k 1 (4p4- 2p2 +1)(1 -3’0 + 3’02)+ 1- 3’05 (~’2+ Q -
pa $

(2 - 4X0 + 3x02)(~3 + G3) - ~(8i34 + 4132- 1)(F4 + ~4) +

(46a)

For the limiting condition of case 2, that is, when the ~ch line

from one tip intersects the opposite tip at the trailing edge, or A = ~

(see fig. 3(c)), the components of section force c~efficients are given
by equations (45) and the corresponding components of moment coeffi-
cients by equations (46).

SOME PARTICULAR CALCULATIONS AND DISCUSSIONS

From the expressions for total force and moment coefficients,
equations (35) snd (38), respectively the o~er-~1 effect of asPect
ratio on the magnitude of the forces and moments can be calculated

.

.

— -– ——

0

.-



.

NACA TN 2064

for particular values of
of these equations shows
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the parameters M, k, X0,-and A. Ikmination
that varying some of the parameters might

cause some terms in the equations to vanish and change sign. l?or
example, if xo is continuously increased from some value less than 1/2
to some value greater than 1/2, the first terms in the expressions

.
for ~ and ~ vanish at w = ~ and change sign when xo %ecomes

greater thanl/2. h particular, decreasing the aspect ratio decreases
the components of force and moment coefficients

—. —
~1~~~ L3~,M1) M2, ‘

and ~ but increases the two importsnt components 74 and ~.

Although the effect of aspect ratio may change considerably with
only a small change in any one (or more) of the parameters M, k,
and x0> some insight into what the over-all effect might be can %e
gained from calculations of all the components of total force and
moment coefficients for various values of M and A and fixed values
of the parameters k and xo. Results of such a set of calculations
are presented in figures 4 to 7.

b figures 4 and 5 the components of total force and mpment
coefficients for various values of A and for xo = 0.4 and k . 0.02
are plotted as functions of M2 . The curves in these figures calculated
for infinite aspect ratio correspond to the two-dimensional results of
referdnce 4. The dashed curves represent calculations for aspect ratio
and Mach number combinations that
intersect the opposite tip at the
dashed curves the aspect ratio is
according to the previously given

cause the Mach lines from one tip to
trailing edge so
not constant but
expression

that along the -
varies with M2

The difference, at any value of M2, between the dashed curves and the
curves correspondingto infinite aspect ratio in figures 4 and 5 is,
therefore, for the chosen values of k and W, the msximum effect of
aspect ratio on the components of total force and moment coefficients
for a rectangular wing under the restrictions of the foregoing analysis.
It will be noted in figures 4 and 5 that, when the aspect ratio is
small, the deviation of the three-dimensional results from two-
dtiensional results may be quite large.

In fig&es 6 and 7“the components of the total force and moment
coefficients are plotted as functions of aspect ratio for ~ = 0.4,
k = 0.02, and some particular values of M. It will be noted in these
figures that all the components of force snd moment coefficients undergo
rapid changes with respect .tovarying aspect ratio when A becomes less

.

—- .---- .—— —--.——-—— --—- .



——. — —..-. .. . . .

26 NACA TN 2064
-.

- than 4 or 5. It may be remarked that the directions of the changes
with respect to aspect ratio appear to be such that they would have
favorable effects on the flutter characteristicsof a wing.

,
The spanwise distribution of the components of section force and

moment coefficients computed from equations (41) to (44) for A = 4,
XO = 0.4, k = 0.02, and M = 2 are plotted in-figures 8 and 9. The
portions of the curves in theselfigures correspondingto values of y

in the range —;~y~+ are ‘thetwo-dimensional values and the

effect of aspect ratio may be noted in the tip regions> 05y5;

andA-~S
r

y ~A, as deviations from these two-dimensional values.

In conclusion, it may be stated”that,-in regard to the effect of
aspect ratio on supersonic flutter, an important item that has not been
discussed herein but can be studied for any particular case with the
aid of equations (33) and (36) is the change in center of pressure,
associated with prescribed motions of the wing> with change in asPect
ratio. An investigationto find the effect that thickness might have
on th~ center-of-pressurelocation is also needed. An extension of the
foregoing analysis to include the effect of an aileron as an additional
degree of freedom would follow in a straightforw=.dmanner.

.

.

.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Vs.; January 6, 1950
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SOME INTFJGRAm

OTEER

Values of Fn and &.-

tion (28), and &, equation
as follows:

F1 .

F2 =

F=
3

F4 =

F5 =

1

APPENDIX

.

VALUES OF Fn, &, ~n, ~, AND

RELATED FUNCTIONS

The values of the functions Fn, equa-

(29), for the’first few values of n We

- x --’ VFYIXPY) +

J3Y(X - PY)

(n=l,2,3, ...)

5X3 - 6j3yx2+ 8p23x + 16D3Y3
140 m

35x4 + 40j3yx3+ 48P2&# + 64&3x + 128~4y4 “
1575 m+

Gn =Jx#-1 sin n= ‘(n=’~=v.)

-1 13(= - Y)

o

Y)~ -p(2s - yj + x sin
-’v ‘

.-— --. ..—- _____ . ..—.—____ _______ _ .___y-.. _ ___ -_ _-, --- _______ . . ..-e.__—_ _.
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J

x
fln dx = ~(x2Fnt- Fn+2)

o“

J
‘2X Fn dx = $(x3Fn + Fn+3) .
0

J

X2-- ‘‘(x. ~)Fn~= 2 ‘n + ‘#n+l -
0

X3 - 3x&* + 3XO*X F

1

x
(X - x0)2 Fn ax = 3 n

0.

NACA TN 2064

.

xo2%+l lF+ XoFn+2 - —3 n+3

Corresponding integral relations for Gn may be obtained from these
relations by simply replacing F by G. /

Integral relations for ~W- htegral relations for Yn that may

be used in calculating total forces and moments from sectional forces
and moments are as follows:

J’
1/$ –

2b ~ldy=y

o

J
l/f3 _

2b ji2dy = b;

o

.

.

a

-..—.—. —
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Figure 1.- Sketch
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Sketch illustrating areas of integration for “purely
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Figure 2.-
. supersonic”
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(a)Mach lines from tips do not intersecton wing.

.

(b)Mach lines from tips intersecton wing but Mach line from on; tip
does not intersectoppositetip.

.

(c)Mach lines from tips intersecton wing and Mach line from one tip
intersectsoppositetip at trailingedge.

Figure 3.- Sketch illustrating different Mach line locations accounted
for in analysis.
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Figure ~.- Components of total moment coefficients as functions of M2
for xo = 0.4, k = 0.02, and various values of A.
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